Abstract

The properties of small molecule Pt(II) compounds that drive specific cellular responses are of interest due to their broad clinical use as chemotherapeutics as well as to provide a better mechanistic understanding of bioinorganic processes. The chemotherapeutic compound cisplatin causes cell death through DNA damage, while oxaliplatin may induce cell death through inhibition of ribosome biogenesis, also referred to as nucleolar stress induction. Previous work has found a subset of oxaliplatin derivatives that cause nucleolar stress at 24 h drug treatment. Here we report that these different Pt(II) derivatives exhibit a range of rates and degrees of global nucleolar stress induction as well as inhibition of rRNA transcription. Potential explanations for these variations include both the ring size and stereochemistry of the non-aquation-labile ligand. We observe that Pt(II) compounds containing a 6-membered ring show faster onset and a higher overall degree of nucleolar stress than those containing a 5-membered ring, and that compounds having the 1R,2R-stereoisomeric conformation show faster onset and a higher overall degree of stress than those having the 1S,2S-conformation. Pt(II) cellular accumulation and cellular Pt(II)-DNA adduct formation did not correlate with nucleolar stress induction, indicating that the effect is not due to global interactions. Together these results suggest that Pt(II) compounds induce nucleolar stress through a mechanism that likely involves one or a few key intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.