Abstract

We present numerical results from solving the time-dependent nonlinear Schr\odinger equation (NLSE) that describes an inhomogeneous, weakly interacting Bose-Einstein condensate in a small harmonic trap potential at zero temperature. With this method we are able to find solutions for the NLSE for ground state condensate wave functions in one dimension or in three dimensions with spherical symmetry. These solutions corroborate previous ground state results obtained from the solution of the time-independent NLSE. Furthrmore, we can examine the time evolution of the macroscopic wave function even when the trap potential is changed on a time scale comparable to that of the condensate dynamics, a situation that can be easily achieved in magneto-optical traps. We show that there are stable solutions for atomic species with both positive and negative s-wave scattering lengths in one-dimensional (1D) and 3D systems for a fixed number of atoms. In both the 1D and 3D cases, these negative scattering length solutions have solitonlike properties. In 3D, however, these solutions are only stable for a modest range of nonlinearities. We analyze the prospects for diagnosing Bose-Einstein condensation in a trap using several experiments that exploit the time-dependent behavior of the condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.