Abstract
The analysis of event sequences with temporal dependencies holds substantial importance across various domains, including healthcare. This study introduces a novel approach that combines sequential rule mining and survival analysis to uncover significant associations and temporal patterns within event sequences. By integrating these techniques, we address the limitations linked to the loss of temporal information. The methodology extends traditional sequential rule mining by introducing time-dependent confidence functions, providing a comprehensive understanding of relationships between antecedent and consequent events. The incorporation of the Kaplan-Meier estimator of survival analysis enables the calculation of temporal distributions between events, resulting in time-dependent confidence functions. These confidence functions illuminate the probability of specific event occurrences considering temporal contexts. To present the application of the method, we demonstrated the usage within the healthcare domain. Analyzing the ICD-10 codes and the laboratory events, we successfully identified relevant sequential rules and their time-dependent confidence functions. This empirical validation underscores the potential of methodology to uncover clinically significant associations within intricate medical data.•The study presents a unique methodology that integrates sequential rule mining and survival analysis.•The methodology extends traditional sequential rule mining by introducing time-dependent confidence functions.•The application of the method is demonstrated within the healthcare domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.