Abstract

Suspensions of multiarm star polymers are studied as models for soft colloidal glasses. Using an established pre-shearing protocol which ensures a reproducible initial state (the “rejuvenation” of the system), we report here the time evolution of the stress upon startup of simple shear flow for a range of shear rates. We show the existence of critical shear rates, γ̇c(c) which are functions of the concentration, c. When the suspensions are sheared at rates below γ̇c(c), the stress rises to a common value σc(c) which is also a function of the concentration. The system thus develops a yield stress. This behavior manifests itself as an evolution from a monotonic slightly shear-thinning flow curve to a flow curve dominated by a stress plateau. We relate this bulk evolution to spatially resolved velocity profiles. Hence, yield stress is linked to shear banding in this class of soft colloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.