Abstract

We present the time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory as a new framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high-order harmonic generation spectra of a one-dimensional model of atomic beryllium interacting with a strong laser pulse, the TD-RASSCF method is reasonably accurate while largely reducing the computational complexity. The TD-RASSCF method has the potential to treat large atoms and molecules beyond the capability of the MCTDHF method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.