Abstract

We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending on the relative contributions of these two components. The prompt electric field responses, with lifetimes of about one hour, are in excellent agreement with results from global convection models. The electric fields generated by storm time winds have longer lifetimes, amplitudes proportional to the energy input into the high latitude ionosphere, and a daily variation which follows closely the disturbance dynamo pattern of Blanc and Richmond [1980]. The storm wind driven electric fields are responsible for the larger amplitudes and longer lifetimes of the drift perturbations following sudden decreases in convection compared to those associated with sudden convection enhancements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.