Abstract

The photoinduced hydrogen elimination reaction in pyrrole via the conical intersection of the 1B1 (1pi sigma*) excited state with the electronic ground state has been investigated by time-dependent quantum wave-packet dynamics. A two-dimensional model potential-energy surface has been constructed as a function of the NH stretching and the hydrogen out-of-plane bending mode, employing multi-reference ab initio electronic-structure methods. The branching ratio of the reactive flux at the conical intersection has been investigated in dependence on the initial vibrational state of the molecule. The results suggest that laser control of the photodissociation of pyrrole via mode-specific vibrational excitation should be possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.