Abstract
We report time-dependent probability density functions (PDFs) for a nonlinear stochastic process with a cubic force using analytical and computational studies. Analytically, a transition probability is formulated by using a path integral and is computed by the saddle-point solution (instanton method) and a new nonlinear transformation of time. The predicted PDF p(x,t) in general involves a time integral, and useful PDFs with explicit dependence on x and t are presented in certain limits (e.g., in the short and long time limits). Numerical simulations of the Fokker-Planck equation provide exact time evolution of the PDFs and confirm analytical predictions in the limit of weak noise. In particular, we show that transient PDFs behave drastically differently from the stationary PDFs in regard to the asymmetry (skewness) and kurtosis. Specifically, while stationary PDFs are symmetric with the kurtosis smaller than 3, transient PDFs are skewed with the kurtosis larger than 3; transient PDFs are much broader than stationary PDFs. We elucidate the effect of nonlinear interaction on the strong fluctuations and intermittency in the relaxation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.