Abstract
The emergence of time-dependent phosphorescence color (TDPC) materials has taken information encryption to high-security levels. However, due to the only path of exciton transfer, it is almost impossible to obtain TDPC for chromophores with a single emission center. Theoretically, in inorganic-organic composites, the exciton transfer of organic chromophores depends on the inorganic structure. Here, we assign two structural effects to inorganic NaCl by metal (Mg2+ or Ca2+ or Ba2+ ) doping, which triggers the TDPC performance of carbon dots (CDs) with a single emission center. The resulting material is used for multi-level dynamic phosphorescence color 3D coding to achieve information encryption. The structural confinement activates the green phosphorescence of CDs; while the structural defect activates tunneling-related yellow phosphorescence. Such simply doped inorganic matrices can be synthesized using the periodic table of metal cations, endowing chromophores with tremendous control over TDPC properties. This demonstration extends the design view of dynamic luminescent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.