Abstract

We report the implementation of a cost-effective approximation method within the framework of the time-dependent optimized coupled-cluster (TD-OCC) method [T. Sato et al., J. Chem. Phys. 148, 051101 (2018)] for real-time simulations of intense laser-driven multielectron dynamics. The method, designated as TD-OCEPA0, is a time-dependent extension of the simplest version of the coupled-electron pair approximation with optimized orbitals [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)]. It is size extensive, gauge invariant, and computationally much more efficient than the TD-OCC method with double excitations. We employed this method to simulate the electron dynamics in Ne and Ar atoms exposed to intense near infrared laser pulses with various intensities. The computed results, including high-harmonic generation spectra and ionization yields, are compared with those of various other methods ranging from uncorrelated time-dependent Hartree-Fock to fully correlated (within the active orbital space) time-dependent complete-active-space self-consistent field (TD-CASSCF). The TD-OCEPA0 results show good agreement with TD-CASSCF ones for moderate laser intensities. For higher intensities, however, TD-OCEPA0 tends to overestimate the correlation effect, as occasionally observed for CEPA0 in the ground-state correlation energy calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.