Abstract

The theory of homogeneous nucleation is discussed and applied to the formation of interstellar grains. Special attention is given to the thermodynamics of very small clusters (N≈10); it is found that, at least for carbon and metals, the free energies ofN-mers may be conveniently expressed in terms of a parameter θ N which is nearly independent ofN. Estimates of θ N from the Lothe-Pound theory disagree with the experimental observations forN<10; it is preferable to simply approximate θ N ≈1/2θ∞ (θ∞ is known from bulk properties). The kinetic process of nucleation and cluster growth is essentially just a function of two dimensionless parameters; θ/T and η. The domain in which nucleation theory should be valid is delineated. Approximate formulae are given for the critical supercooling, the critical cluster size, and the mean final cluster size; more accurate numerical results are presented graphically. Nucleation of grains in planetary nebulae, novae, and red giant outflows is discussed. The origin of the Pt-rich nuggets found in the Allende meteorite is considered; it is shown that the nuggets could have been formed by homogeneous nucleation in the primordial solar nebula, whereas they couldnot have formed in a supernova explosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.