Abstract
The epileptogenesis may involve a variety of signaling events that culminate with synaptic reorganization. Mitogen-activated protein kinases (MAPKs) and AKT may be activated by diverse stimulus including neurotransmitter, oxidative stress, growth factors and cytokines and are involved in synaptic plasticity in the hippocampus and cerebral cortex. The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. We analyze the phosphorylation profile of MAPKs (ERK1/2, p38(MAPK), JNK1/2/3) and AKT by western blotting in the hippocampus (Hip) and cortex (Ctx) of male adult wistar rats in different periods, after pilocarpine induced status epilepticus (Pilo-SE) and compared with control animals. Biochemical analysis were done in the Hip and Ctx at 1, 3, 12h (acute period), 5days (latent period) and 50days (chronic period) after Pilo-SE onset. Hence, the main findings include increased phosphorylation of ERK1 and p38(MAPK) in the Hip and Ctx 1 and 12h after the Pilo-SE onset. The JNK2/3 isoform (54kDa) phosphorylation was decreased at 3h after the Pilo-SE onset and in the chronic period in the Hip and Ctx. The AKT phosphorylation increased only in the Hip during the latent period. Our study demonstrates, in a systematic manner, the profile of MAPKs and AKT modulation in the hippocampus and cerebral cortex in response to pilocarpine. Based in the role of each signaling enzyme is possible that these changes may be related, at least partially, to modifications in the intrinsic neuronal physiology and epileptogenic synaptic network that appears in the MTLE-HS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.