Abstract

Computational approaches for spatial modeling of dynamics of the intercellular distribution of molecules can parse, simplify, classify and organize the spatiotemporal richness of any biochemical pathway and demonstrate its impact on the cells function by simply coupling it with the downstream effecters. One such online system biology modeling package is Virtual cell that provides a unique open source software and it’s used for making mathematical models to simulate the cytoplasmic control of molecule that interact to produce certain cellular behavior. In our present study, a spatial model for time dependent acetylcholine induced relaxation of vascular endothelial cells lining the lumen of blood vessel that regulate the contractility of the arteries was generated. The time-dependent action of neurotransmitter acetylcholine for total time period for 1 second was studied on the endothelial cell at an interval of every 0.05 seconds. Such time simulated spatial models may be useful for testing and developing new hypotheses, interpretation of results and understand the dynamic behavior of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.