Abstract

Nonfibrillar β-amyloid (Aβ) oligomers are considered as major neurotoxic species in the pathology of Alzheimer's disease. The presence of Aβ oligomers was shown to cause membrane disruptions in a broad range of model systems. However, the molecular basis of such a disruption process remains unknown. We previously demonstrated that membrane-incorporated 40-residue Aβ (Aβ40) oligomers could form coaggregates with phospholipids. This process occurred more rapidly than the fibrillization of Aβ40 and led to more severe membrane disruption. The present study probes the time-dependent changes in lipid dynamics, bilayer structures, and peptide-lipid interactions along the time course of the oligomer-induced membrane disruption, using solid-state NMR spectroscopy. Our results suggest the presence of certain intermediate states with phospholipid molecules entering the C-terminal hydrogen-bonding networks of the Aβ40 oligomeric cores. This work provides insights on the molecular mechanisms of Aβ40-oligomer-induced membrane disruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.