Abstract

Nitromethane (CH(3)NO(2)) and its chlorinated analogue, chloropicrin (CCl(3)NO(2)), were photolyzed at 193, 248, and 266 nm, and the products were observed by time-dependent Fourier transform infrared emission spectroscopy. At 193 and 248 nm, the primary photodissociation pathway for nitromethane was cleavage of the C-N bond to produce CH(3) + NO(2)(A (2)B(2)). At 266 nm, weak emission was observed following photodissociation of nitromethane, but an infrared spectrum could not be obtained. The photodissociation of chloropicrin at 193 nm produced the analogous product channel CCl(3) + NO(2)(A (2)B(2)) in addition to several other product channels. At 248 and 266 nm, only CCl(3) + NO(2)(A (2)B(2)) was observed. The production of phosgene (CCl(2)O) from chloropicrin photodissociation was not observed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.