Abstract

AbstractData imputation of incomplete image sequences is an essential prerequisite for analyzing and monitoring all development stages of plants in precision agriculture. For this purpose, we propose a conditional Wasserstein generative adversarial network TransGrow that combines convolutions for spatial modeling and a transformer for temporal modeling, enabling time-dependent image generation of above-ground plant phenotypes. Thereby, we achieve the following advantages over comparable data imputation approaches: (1) The model is conditioned by an incomplete image sequence of arbitrary length, the input time points, and the requested output time point, allowing multiple growth stages to be generated in a targeted manner; (2) By considering a stochastic component and generating a distribution for each point in time, the uncertainty in plant growth is considered and can be visualized; (3) Besides interpolation, also test-extrapolation can be performed to generate future plant growth stages. Experiments based on two datasets of different complexity levels are presented: Laboratory single plant sequences with Arabidopsis thaliana and agricultural drone image sequences showing crop mixtures. When comparing TransGrow to interpolation in image space, variational, and adversarial autoencoder, it demonstrates significant improvements in image quality, measured by multi-scale structural similarity, peak signal-to-noise ratio, and Fréchet inception distance. To our knowledge, TransGrow is the first approach for time- and image-dependent, high-quality generation of plant images based on incomplete sequences.KeywordsData imputationTransformerPositional encodingImage time seriesConditional GANImage generationPlant growth modeling

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.