Abstract
Over the last few years, Deep Eutectic Solvents have gained popularity as a novel class of green solvents, due to their feasible synthesis and overall low production costs. The properties of glycerol (Gly)-based Deep Eutectic Solvents are frequently associated with the formation of an extended hydrogen bond network. In this study, two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy is employed to analyse the effect of glycerol oversaturation of the hydrogen bond acceptor, choline chloride (ChCl) on the structural arrangement of glyceline (molar ratio 1 : 2 ChCl:Gly), selected to represent Gly-based Deep Eutectic Solvents. The rearrangement of glycerol molecules, additionally trapping water molecules inside of isolated clusters, is revealed during a time-resolved analysis, performed in the presence of various fractions of water added to solvent. 200 % oversaturated Deep Eutectic Solvent (1 : 4 ChCl:Gly) is found to be a suitable cryoprotectant candidate, based on the revealed glycerol-water interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.