Abstract

Polypeptide antibiotics (PPAs), silver nanoparticles (plural) (AgNP) and quorum sensing inhibitors (QSIs) are considered to be the ideal antibiotic substitutes. Due to the great potential for the combined use of these antibacterial agents, it is necessary to evaluate their joint effects. In this study, the joint toxic actions for the binary mixtures of PPA + PPA, PPA + AgNP, and PPA + QSI were judged via the independent action (IA) model based on the individual and combined toxicity of test agents to the bioluminescence of Aliivibrio fischeri during 24 h. It was observed that the single agents (PPAs, AgNP, and QSI) and the binary mixtures (PPA + PPA, PPA + AgNP, and PPA + QSI) all triggered the time-dependent hormetic effects on the bioluminescence, where the maximum stimulatory rate, the median effective concentration, and the occurrence of hormesis varied with the increase of time. While bacitracin triggered the maximum stimulatory rate (266.98 % at 8 h) among the single agents, the mixture of capreomycin sulfate and 2-Pyrrolidinone induced the maximum stimulatory rate (262.21 % at 4 h) among the binary mixtures. The cross-phenomenon that the dose-response curve of mixture crossed the corresponding IA curve was observed in all treatments, which also varied with time, exhibiting that the joint toxic actions and corresponding intensities possessed dose- and time-dependent features. Furthermore, three kinds of binary mixtures resulted in three different variation tendencies for the time-dependent cross-phenomena. Mechanistic speculation indicated that test agents possessed the stimulatory modes of action (MOAs) at low-dose and inhibitory MOAs at high-dose to induce the hormetic effects, and the interplays between these MOAs varied with time to trigger the time-dependent cross-phenomenon. This study provides the reference data for the joint effects of PPAs and typical antibacterial agents, which will benefit the application of hormesis in the exploration of time-dependent cross-phenomenon and promote the future development of environmental risk assessment of pollutant mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call