Abstract

The problem of how the corona is heated is of central importance in solar physics research. Here it is assumed that the heating occurs in a regular time-dependent manner and the response of the plasma is investigated. If the magnetic field is strong then the dynamics reduces to a one-dimensional problem along the field. In addition if the radiative time in the corona is much longer than the sound travel time then the plasma evolvesisobarically. The frequency with which heat is deposited in the corona is investigated and it is shown that there is a critical frequency above which a hot corona can be maintained and below which the plasma temperature cools to chromospheric values. An evaluation of the isobaric assumption to the solar corona and the implications of time-dependent heating upon the forthcoming SOHO observations are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call