Abstract

A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schrödinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.