Abstract

The exchange-correlation hole and potential of the homogeneous electron gas have been investigated within the random-phase approximation, employing the plasmon-pole approximation for the linear density response function. The angular dependence as well as the time dependence of the exchange-correlation hole are illustrated for a Wigner-Seitz radius ${r}_{s}=4$ (atomic unit). It is found that there is a substantial cancellation between exchange and correlation potentials in space and time, analogous to the cancellation of exchange and correlation self-energies. Analysis of the sum rule explains why it is more advantageous to use a noninteracting Green function than a renormalized one when calculating the response function within the random-phase approximation and consequently the self-energy within the well-established $GW$ approximation. The present study provides a starting point for more accurate and comprehensive calculations of the exchange-correlation hole and potential of the electron gas with the aim of constructing a model based on the local density approximation as in density functional theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call