Abstract

Abstract This paper studies time-dependent electromagnetic scattering from obstacles that are described by dispersive material laws. We consider the numerical treatment of a scattering problem in which a dispersive material law, for a causal and passive homogeneous material, determines the wave–material interaction in the scatterer. The resulting problem is nonlocal in time inside the scatterer and is posed on an unbounded domain. Well-posedness of the scattering problem is shown using a formulation that is fully given on the surface of the scatterer via a time-dependent boundary integral equation. Discretizing this equation by convolution quadrature in time and boundary elements in space yields a provably stable and convergent method that is fully parallel in time and space. Under regularity assumptions on the exact solution we derive error bounds with explicit convergence rates in time and space. Numerical experiments illustrate the theoretical results and show the effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.