Abstract

This paper concerns a comprehensive investigation of time-dependent electroadhesion (EA) force degradation. EA shear force tests on different object materials (a PET, glass, ABS, and wood plate) have shown that force degradation was dominated by residual polarization charges trapped in the EA pad dielectric rather than in the substrate dielectric from which the object to be prehended is made. In order to explain this dynamic physical phenomenon, a model of dielectric polarization and depolarization has been proposed. According to the derived relationship between EA force and discharge time, three different methods intended to mitigate this problem has been compared: (1) the natural discharge method, (2) the high voltage resistor discharge method, and (3) the discharge prior to field polarity reversal method. These methods are useful for generating repeatable and stable EA forces, which are required for the characterization of EA pads and their subsequent employment in material handling, mobile robot crawling and climbing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.