Abstract
In this study, we investigated the hypothesis that the metabolic adaptations observed during steady-state exercise soon after the onset of training would be displayed during the nonsteady period of moderate exercise and would occur in the absence of increases in peak aerobic power (Vo2peak) and in muscle oxidative potential. Nine untrained males [age = 20.8 +/- 0.70 (SE) yr] performed a cycle task at 62% Vo2peak before (Pre-T) and after (Post-T) training for 2 h/day for 5 days at task intensity. Tissue samples extracted from the vastus lateralis at 0 min (before exercise) and at 10, 60, and 180 s of exercise, indicated that at Pre-T, reductions (P < 0.05) in phosphocreatine and increases (P < 0.05) in creatine, inorganic phosphate, calculated free ADP, and free AMP occurred at 60 and 180 s but not at 10 s. At Post-T, the concentrations of all metabolites were blunted (P < 0.05) at 60 s. Training also reduced (P < 0.05) the increase in lactate and the lactate-to-pyruvate ratio observed during exercise at Pre-T. These adaptations occurred in the absence of change in Vo2peak (47.8 +/- 1.7 vs. 49.2 +/- 1.7 mlxkg(-1)xmin(-1)) and in the activities (molxkg protein(-1)xh(-1)) of succinic dehydrogenase (3.48 +/- 0.21 vs. 3.77 +/- 0.35) and citrate synthase (7.48 +/- 0.61 vs. 8.52 +/- 0.65) but not cytochrome oxidase (70.8 +/- 5.1 vs. 79.6 +/- 6.6 U/g protein; P < 0.05). It is concluded that the tighter metabolic control observed following short-term training is initially expressed during the nonsteady state, probably as a result of increases in oxidative phosphorylation that is not dependent on changes in Vo2peak while the role of oxidative potential remains uncertain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.