Abstract

PurposeTo study the time-dependent effects of reduced cerebrospinal fluid pressure (CSFP) on axonal transport in the rat optic nerve.MethodsSeventy-two adult Sprague Dawley rats were used for this study. Fluoro-Gold was injected into the superior colliculi to study axonal transport. CSFP was reduced to 1.5 to 2.9 mm Hg by continuous aspiration of cerebrospinal fluid. In the sham control group (n = 18), a trocar was implanted in the cisterna magna, but cerebrospinal fluid was not released. CSFP and intraocular pressure (IOP) were continually monitored. CSFP was reduced for 1 hour (low-CSFP-1h study group; n = 18), 3 hours (low-CSFP-3h study group; n = 18), or 6 hours (low-CSFP-6h study group; n = 18) before the animals were euthanized. Confocal microscopy was used to compare axonal transport in different quadrants of the retina between control and low-CSFP eyes.ResultsChanges in axonal transport were observed only after 3 hours of CSFP reduction and not in the low-CSFP-1h study group. These changes occurred in a time-dependent manner, with 6 hours of CSFP reduction producing the longest lasting and most severe reduction in fluorescence.ConclusionsThe time-dependent changes observed in axonal transport in the optic nerve provide further evidence regarding the pathogenesis of axonal damage caused by reduced CSFP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.