Abstract

White adipose tissue development is regulated by many factors, including the energy content of food and the genetic background. Nevertheless, little is known about possible differential effects of high-fat palatable diets when fed for short or long-time periods. Thus, the expression of certain genes involved with lipid metabolism (peroxisome proliferator-activated receptor gamma, PPARγ2; retinoic receptors; fatty acid binding protein, aP2 and uncoupling proteins, UCP) may be affected by those dietary manipulations (high-energy-yielding diet and time duration of feeding). High-fat feeding for 8 days decreased mRNA UCP3 levels compared to control fed animals, while feeding for 30 days increased them over controls. Similar findings occurred for PPARγ2 and aP2. Furthermore, statistically significant associations were found among PPARγ2, aP2 and UCP3 mRNA levels. These data suggest a physiological time-dependent response seeking to prevent excessive fat deposition when animals are fed for short-term with a high amount of dietary fat, which was followed by an adaptive period to the high-energy content of diet throughout a coregulation among certain lipid metabolism related genes: PPARγ2, aP2, UCP3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.