Abstract

ABSTRACTThe paper explores fatigue at both low and high temperature where creep and environmental damage interact with the normal cyclic processes of crack development. This is achieved by studying two contrasting material systems: the titanium alloys (Ti685, Ti834, Ti6246) and the nickel alloys (Udimet 720Li). Particular attention is given to both load and strain control fatigue response and crack development at stress concentration features. In each case there is an interesting balance between the beneficial effects of stress relaxation and the damaging effects of creep and environmental factors. On the crack growth side, the relative contributions of creep and environment are highlighted through measurements made in air and vacuum and by varying R value and dwell time. At the same time, any complications due to closure are removed by careful measurement of closure levels for each condition. The inadequacy of linear damage models for combining cyclic and time dependent effects is highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.