Abstract

We present an analytical study of the time dependent diffusion coefficient in a dilute suspension of spheres with partially absorbing boundary condition. Following Kirkpatrick [J. Chem. Phys. 76, 4255 (1982)] we obtain a perturbative expansion for the time dependent particle density using volume fraction f of spheres as an expansion parameter. The exact single particle t operator for partially absorbing boundary condition is used to obtain a closed form time dependent diffusion coefficient D(t) accurate to first order in the volume fraction f. Short and long time limits of D(t) are checked against the known short time results for partially or fully absorbing boundary conditions and long time results for reflecting boundary conditions. For fully absorbing boundary condition the long time diffusion coefficient is found to be D(t)=5a(2)/(12fD(0)t)+O((D(0)t/a(2))(-2)) to the first order of perturbation theory. Here f is small but nonzero, D(0) the diffusion coefficient in the absence of spheres, and a the radius of the spheres. The validity of this perturbative result is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call