Abstract

Time-Dependent Dielectric Breakdown (TDDB) models for silica(SiO2)-based dielectrics are revisited so as to better understand the ability of each model to explain quantitatively the generally accepted TDDB observations. Molecular dielectric degradation models, which lead to percolation path generation and eventual TDDB failure, tend to fall into three broad categories: field-based models, current-based models, and complementary combinations of field and current-based models. A complementary combination of field-induced polar-bond stretching and current-induced bond-catalysis seems to be required, at the molecular level, to explain the generally accepted TDDB observations. Thus, TDDB modeling is not simply the use of field or current – but both. Complementary combinations of field and current are required to fully explain the generally accepted TDDB observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.