Abstract

Molecular deuterium is prepared in the J = 2, M = 0 sublevel of ν = 1 by stimulated Raman pumping of the ν = 0 S(0) line. Following optical excitation, the degree of alignment of the rotational angular momentum J oscillates in time caused by the coupling of J to the total nuclear spin angular momentum I(T). This coupling is of two kinds, the interaction of J with the magnetic moments and the quadrupole fields of the two I = 1 deuterium nuclei. The alignment is monitored via the O(2) line of the E,F(1)Σ(g)(+)-X(1)Σ(g)(+) (0,1) band using [2+1] resonance enhanced multiphoton ionization for pump-probe delays from 0 to 20 μs. Using the hyperfine coupling constants found previously for the ν = 0 state (R. F. Code and N. F. Ramsey, Phys. Rev. A, 1971, 4, 1945), we are able to fit the time dependence essentially within our experimental error, but this requires that the presence of both I(T) = 0 and I(T) = 2 nuclear spin states for this o-deuterium level is properly weighted and taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.