Abstract
We focus on studying the opacity of iron, chromium, and nickel plasmas at conditions relevant to experiments carried out at Sandia National Laboratories [J. E. Bailey etal., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. We calculate the photoabsorption cross sections and subsequent opacity for plasmas using linear-response time-dependent density functional theory (TD-DFT). Our results indicate that the physics of channel mixing accounted for in linear-response TD-DFT leads to an increase in the opacity in the bound-free quasicontinuum, where the Sandia experiments indicate that models underpredict iron opacity. However, the increase seen in our calculations is only in the range of 5%-10%. Further, we do not see any change in this trend for chromium and nickel. This behavior indicates that channel mixing effects do not explain the trends in opacity observed in the Sandia experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.