Abstract

The alignment-dependent ionization of acetylene and ethylene in short laser pulses is investigated in the framework of the time-dependent density-functional theory coupled with Ehrenfest dynamics. The molecular alignment is found to have a substantial effect on the total ionization. Bond stretching is shown to cause an increase of the ionization efficiency, i.e., enhanced ionization, in qualitative agreement with previous theoretical investigations. It is also demonstrated that the enhanced ionization mechanism greatly enhances the ionization from the inner valence orbitals, and the ionization of the inner orbitals is primarily due to their extended weakly bound density tails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.