Abstract

As a mature technology, electroless Ni–P alloy coating is widely applied in the protection of chemical equipment and pipelines owing to its excellent corrosion resistance, but its application and long-term service evaluation in the field of high-sulfur oil and gas are rare. Therefore, the time-dependent corrosion behavior of Ni–P coating, which was plated on the L360 steel surface, was investigated in a saturated H2S medium by the method of surface analysis. The results indicate that Ni–P coating with a thickness of about 52.6 μm could significantly reduce the corrosion rate compared with uncoated pipeline steel. This is related to the structure of the dense, protective film on the surface. The uncoated pipeline steel suffered local corrosion during the immersion process, and then it developed into uniform corrosion with the formation of a large number of corrosion products. In comparison, Ni–P coatings corroded relatively mildly with only a thin corroded layer. However, during prolonged corrosion testing, the corrosive medium penetrated the coating/substrate interface at inherent defects, leading to severe local corrosion of the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call