Abstract
Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.