Abstract

Electron correlation and environmental effects play important roles in electron dynamics and spectroscopic observables of chemical systems in condensed phase. In this paper, we present a time-dependent complete active space configuration interaction (TD-CASCI) approach embedded in a polarizable force field, MMPol. The present implementation of TD-CASCI/MMPol utilizes a direct matrix-vector contraction, allowing studies of large systems. This scheme is used to study the solvatochromic shift of coumarin 153 in methanol. The TD-CASCI/MMPol approach captures the double excitation character in the excited state wave function and accurately predicts the solvatochromic red-shift of coumarin 153 dye within the experimental range, outperforming linear response time-dependent density functional theory. The effect of using different reference orbitals for the TD-CASCI/MMPol simulation is also investigated, highlighting the need for an unbiased treatment of all electronic states in the energy range of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.