Abstract

We recently reported that increased glucocorticoid (GC) levels in immobilized mice were suppressed by exposure to a 50-Hz electric field (EF) in kV/m-dependent and exposure duration-dependent manners. Here, we characterized time-dependent changes in the effect of EF exposure in immobilized mice. Using control, EF-alone, immobilization-alone, and co-treated groups, plasma GC levels, and blood properties were first measured (0-60 min) to observe changes induced by each treatment and measured again (60-120 min) to assess recovery from each treatment. The 50-Hz, 10-kV/m EF was formed in a parallel plate electrode. Co-treated mice were exposed to the EF for 60 min for the first measurement and were immobilized for the second half (30-60 min) of the EF exposure period. Plasma GC levels did not change significantly over time in the control and EF-alone groups. GC levels in the immobilization-alone and co-treated groups increased after immobilization, peaking 30 min after the start of immobilization and then decreasing gradually; however, the GC peak was lower in the co-treated group than in the immobilization-alone group (P < 0.05 at 50 and P < 0.001 at 60 min). Red blood cell counts, hemoglobin levels, and hematocrit values increased after immobilization but were not affected by the EF. Our findings indicate that the EF did not shift the peak of the time-dependent increase in plasma GC levels in immobilized mice but simply reduced it. Bioelectromagnetics. 38:272-279, 2017. © 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.