Abstract
Observations from diverse studies on cell biomechanics and mechanobiology reveal that altered mechanical stimuli can induce significant changes in cytoskeletal organization, focal adhesion complexes, and overall mechanical properties. To investigate effects of short-term equibiaxial stretching on the transverse stiffness of and remodeling of focal adhesions in vascular smooth muscle cells, we developed a cell-stretching device that can be combined with both atomic force and confocal microscopy. Results demonstrate that cyclic 10%, but not 5%, equibiaxial stretching at 0.25 Hz significantly and rapidly alters both cell stiffness and focal adhesion associated paxillin and vinculin. Moreover, measured changes in stiffness and focal adhesion area from baseline values tend to correlate well over the durations of stretching studied. It is suggested that remodeling of focal adhesions plays a critical role in regulating cell stiffness by recruiting and anchoring actin filaments, and that cells rapidly remodel in an attempt to maintain a homeostatic biomechanical state when perturbed above a threshold value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.