Abstract

By drilling a wellbore cavity, high stresses arise at the wellbore wall, leading to the formation of breakouts which enlarge the hole to an elongated shape oriented along the direction of the minimum principal stress. If formation of breakouts is delayed, rock debris falls on the drill bit which may lead to stuck pipe problems or even abandonment of the drill string. Reasons for such time-delayed failure of the wellbore may be due to chemical fluid–rock interaction, especially in swelling clays. However, such delayed instabilities have also been observed e.g. in gneiss formations at the KTB borehole (Germany) that are not known to exhibit a swelling behavior. We propose to explain observations of delayed wellbore failure by time-dependent brittle creep, which has been observed for many types of rocks. Following this approach, rock fails under loads less than their short-time strength but after a long enough time span. This time is in exponential relation to the load applied to the rock. We implement a model developed for the creation of shear bands on the basis of time-dependent brittle creep by Amitrano and Helmstetter (2006). Here, progressive damage of the formation is captured by a damage parameter D and the time-to-failure TTF. Young׳s modulus E is decreased by a factor every time TTF is expired, i.e. when failure is reached. Subsequently, stresses are redistributed according to the new distribution of E in the formation. Using this approach, we obtain closure of the well with primary and secondary creep phases. Wellbore breakouts are formed progressively with deepening and widening of the initially damaged zone. After a certain time the formation of breakouts comes to an end with an Omori-like decay of failure approaching a steady-state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.