Abstract

We deploy a time-dependent Born–Oppenheimer approximation approach for numerically solving the time-dependent Schrödinger equation (TDSE) by reducing the wavefunction dimensionality to nuclear and electronic degrees of freedom, and apply it to a one-dimensional model of H2+. Based upon our three distinct error evaluation schemes, we quantitatively compare the wavefunctions and HHG spectra which are computed by the present approximation method, with those obtained by fully solving the TDSE. The similarities of both the wavefunctions and the HHG spectra justify that our approach is feasibly precise for medium laser intensity. It is also anticipated that this approximation can be adopted for other polyatomic molecules with a dimensionality reduction and computational simplification in calculating the time-dependent wavefunctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call