Abstract

Light propagation and localization in a random structure with a periodic background is an upcoming paradigm for novel photonic applications. This paper demonstrates the phenomenon of time dependent transmittance of evanescent Bloch modes (EBM) in ZnS random photonic crystal (RPC) which forms the basis for photonic delay switching. The RPC is fabricated by colloidal self-assembly with ZnS nanospheres of size 215 nm. An anomalous reciprocity and time dependent transmission at EBM (mid band gap wavelength) are observed in coherent back scattering and transmission studies respectively. These are explained on the basis of restricted propagation of EBMs through random channels in the periodic background and enhanced field storage inside RPC. The channelized propagation of EBMs is evident from decreasing time delay of transmittance at reduced thicknesses. The proportionality between transmission time delay and incident power confirms photon (field) storage within the RPC. The results indicate that structures with systematically engineered EBM channels can work as wavelength selective delay switch and further provide a short time photon storage system under non-absorbing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call