Abstract

Iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σα→ε) for the transformation ∼14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 106 ≤μ̇α→ε(s−1) ≤ 5×108. We find σα→ε= 10.8 + 0.55 ln(μ̇α→ε) for μ̇α→ε < 106/s and σα→ε= 1.15(μ̇α→ε)0.18 for μ̇α→ε > 106/s. This μ̇ response is quite similar to recent results on incipient plasticity in Fe [Smith et al., J. Appl. Phys. 110, 123515 (2011)] suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for μ̇ > 106/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.