Abstract

In many recent electrolysis fusion experiments, excess heat, tritium, and neutron production have been reported as intermittent bursts. These burst phenomena are described in terms of a surface reaction mechanism involving hysteresis of deuterium solubility in palladium as a function of the metal temperature. Excess heat generation is shown to be attributable to a hitherto neglected time-delayed chemical process due to the solubility hysteresis of deuterium in palladium. Negative results of no apparent excess heat generation from light-water electrolysis experiments is attributed to the fact that the solubility hysteresis of hydrogen occurs at a higher temperature range than that for deuterium. Apparent excess heat generation is expected to be also observable in blank electrolysis experiments with light water at higher pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.