Abstract

We demonstrate that a semiconductor laser perturbed by distributed feedback with random time delays from a large number of scattering centers along a fiber random grating can emit light chaotically without the time-delay signature (TDS). A theoretical model is developed based on the modified Lang-Kobayashi model to numerically explore the chaotic dynamics of the laser diode subjected to random feedback. It is predicted that the random distributed feedback destroys the phase-correlated mode condition and hence suppresses the TDS. The fiber random grating is fabricated with random index modulation periods through point-by-point inscription, which introduces large numbers of phase-uncorrelated cavity modes into the semiconductor laser, leading to high dimensional chaotic dynamics and thus the concealment of the TDS. The experimentally obtained TDS value is negligible with a minimum of 0.0088, which is the smallest to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call