Abstract

The carbonation tower is a key reactor to manufacturing synthetic soda ash using the Solvay process. Because of the complexity of the reaction in the tower, it is difficult to control such a nonlinear large-time-delay system with normal measurement instrumentation. To solve this problem, a time-delay neural network (TDNN) is used in the soft measurement model in this paper. A special back-propagation algorithm is developed to train the neural network. Compared with the model based on multilayered perceptron, it is shown that TDNN can describe the system's dynamic character better and predict much more precisely. The influences of the input variables to the output of the model are analyzed with the online data. Analysis results show this model matches the reaction kinetics and the real operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.