Abstract

ABSTRACT We present a joint strong lensing and stellar dynamical framework for future time-delay cosmography purposes. Based on a pixelated source reconstruction and the axisymmetric Jeans equations, we are capable of constraining cosmological distances and hence the current expansion rate of the Universe (H0) to the few per cent level per lens, when high signal-to-noise integral field unit (IFU) observations from the next generation of telescopes become available. For illustrating the power of this method, we mock up IFU stellar kinematic data of the prominent lens system RXJ1131−1231, given the specifications of the James Webb Space Telescope. Our analysis shows that the time-delay distance (DΔt) can be constrained with 3.1 per cent uncertainty at best, if future IFU stellar kinematics are included in the fit and if the set of candidate model parametrizations contains the true lens potential. These constraints would translate to a 3.2 per cent precision measurement on H0 in flat ΛCDM cosmology from the single lens RXJ1131−1231, and can be expected to yield an H0 measure with ≤2.0 per cent uncertainty, if similar gains in precision can be reached for two additional lens systems. Moreover, the angular diameter distance (Dd) to RXJ1131−1231 can be constrained with 2.4 per cent precision, providing two distance measurements from a single lens system, which is extremely powerful to further constrain the matter density (Ωm). The measurement accuracy of Dd, however, is highly sensitive to any systematics in the measurement of the stellar kinematics. For both distance measurements, we strongly advise to probe a large set of physically motivated lens potentials in the future, to minimize the systematic errors associated with the lens mass parametrization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.