Abstract
The parameters of an echo signal from the underwater lidar are studied for the case of modulation of a probing pulse by a high frequency signal with a frequency linearly varying with time. The analysis is based on the statistical Monte Carlo simulations of the frequency and phase responses of a signal propagating along the emitter-water-reflector-water-receiver path and an analytical representation of the signal as a pulse described by a Gaussian function with intrapulse modulation. Delays and pulse shape changes caused by temporal dispersion of the photon-density waves are estimated. It is shown that the temporal dispersion effect reduces the efficiency of the matched processing of a complex signal in the receiving system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.