Abstract
Time crystals are quantum many-body systems which are able to self-organize their motion in a periodic way in time. Discrete time crystals have been experimentally demonstrated in spin systems. However, the first idea of spontaneous breaking of discrete time translation symmetry, in ultra-cold atoms bouncing on an oscillating mirror, still awaits experimental demonstration. Here, we perform a detailed analysis of the experimental conditions needed for the realization of such a discrete time crystal. Importantly, the considered system allows for the realization of dramatic breaking of discrete time translation symmetry where a symmetry broken state evolves with a period tens of times longer than the driving period. Moreover, atoms bouncing on an oscillating mirror constitute a suitable system for the realization of dynamical quantum phase transitions in discrete time crystals and for the demonstration of various non-trivial condensed matter phenomena in the time domain. We show that Anderson localization effects, which are typically associated with spatial disorder and exponential localization of eigenstates of a particle in configuration space, can be observed in the time domain when ultra-cold atoms are bouncing on a randomly moving mirror.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.