Abstract

In this article, we investigate an innovative solution, to implement high sampling frequency industrial control by means of networked embedded systems connected via WiFi. The basic idea relies on a co-design approach for the control application, which is then able to adapt its sampling period, as well as to tune the Wi-Fi parameters, according to the feedback coming from the network. To this end, we implemented a cross-layer architecture acting at both application and data-link layers, which features a robust frame-delay state estimator, a time-efficient communication policy, and a specific tuning of the critical protocol parameters. Suitable hardware-in-the-loop experiments have been carried out exploiting two different embedded systems available off-the-shelf. The preliminary results, obtained from an extensive experimental campaign, are encouraging since they show that the proposed architecture enables industrial control applications requiring a sampling rate up to 1000 Hz, even in presence of communication impairments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.