Abstract

BackgroundHuman induced pluripotent stem cells (hiPSCs) have been attempted for clinical application with diverse iPSCs sources derived from various cell types. This proposes that there would be a shared reprogramming route regardless of different starting cell types. However, the insights of reprogramming process are mostly restricted to only fibroblasts of both human and mouse. To understand molecular mechanisms of cellular reprogramming, the investigation of the conserved reprogramming routes from various cell types is needed. Particularly, the maturation, belonging to the mid phase of reprogramming, was reported as the main roadblock of reprogramming from human dermal fibroblasts to hiPSCs. Therefore, we investigated first whether the shared reprogramming routes exists across various human cell types and second whether the maturation is also a major blockage of reprogramming in various cell types.ResultsWe selected 3615 genes with dynamic expressions during reprogramming from five human starting cell types by using time-course microarray dataset. Then, we analyzed transcriptomic variances, which were clustered into 3 distinct transcriptomic phases (early, mid and late phase); and greatest difference lied in the late phase. Moreover, functional annotation of gene clusters classified by gene expression patterns showed the mesenchymal-epithelial transition from day 0 to 3, transient upregulation of epidermis related genes from day 7 to 15, and upregulation of pluripotent genes from day 20, which were partially similar to the reprogramming process of mouse embryonic fibroblasts. We lastly illustrated variations of transcription factor activity at each time point of the reprogramming process and a major differential transition of transcriptome in between day 15 to 20 regardless of cell types. Therefore, the results implied that the maturation would be a major roadblock across multiple cell types in the human reprogramming process.ConclusionsHuman cellular reprogramming process could be traced into three different phases across various cell types. As the late phase exhibited the greatest dissimilarity, the maturation step could be suggested as the common major roadblock during human cellular reprogramming. To understand further molecular mechanisms of the maturation would enhance reprogramming efficiency by overcoming the roadblock during hiPSCs generation.

Highlights

  • Human induced pluripotent stem cells have been attempted for clinical application with diverse iPSCs sources derived from various cell types

  • Three distinct transcriptomic states exist during cellular reprogramming in various cell types To analyze the relatedness of the cellular transcription profiles at each time point during reprogramming, we performed Principal component analysis (PCA), and hierarchical clustering from 3615 genes

  • According to the PCA and Hierarchical Clustering Analysis (HCA) results, the transcriptome during cellular reprogramming was broadly divided into three clusters based on their similarities: the early phase from day 0 to 3, the mid phase from day 7 to 15, and the late phase from day 20 to later (Fig. 2)

Read more

Summary

Introduction

Human induced pluripotent stem cells (hiPSCs) have been attempted for clinical application with diverse iPSCs sources derived from various cell types. This proposes that there would be a shared reprogramming route regardless of different starting cell types. Previous studies conducted time-course gene expression analyses during reprogramming using mouse embryonic fibroblasts (MEFs) [3, 4]. These studies suggested the progression of reprogramming is broadly divided into three phases: initiation, maturation, and stabilization. The results indicated that suppression of mesenchymal genes is followed by transient upregulation of epidermis related genes whose inactivation soon turns on pluripotency genes [6, 7]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.