Abstract

We have used the gill- and siphon-withdrawal reflex of Aplysia californica to explore the morphological basis of the synaptic plasticity that underlies long-term sensitization. In earlier studies (Bailey and Chen, 1983, 1988a), we described 2 classes of structural changes at identified sensory neuron synapses that occur following long-term sensitization: (1) increases in the number, size, and vesicle complement of active zones and (2) an overall increase in the total number of synaptic varicosities per sensory neuron. In the present study, we have begun to examine which of these anatomical changes might be necessary for the maintenance of long-term sensitization by exploring the time course over which they occur and, in particular, their duration relative to the persistence of the memory assessed behaviorally. Toward this end we have quantitated changes in both the total number of varicosities and their active zone morphology in single HRP-labeled sensory neurons taken from long-term sensitized and control animals at different intervals (1-2 d, 1 week, and 3 weeks) following training. We have found that long-term sensitized animals examined within 48 hr after the completion of training demonstrate an increase in the total number of varicosities per sensory neuron as well as an increase in the incidence, size, and vesicle complement of their synaptic active zones compared with control animals. The increase in the number of varicosities and active zones persists unchanged for at least 1 week, and the increase in active zone number is only partially reversed at the end of 3 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.